Sustained antimicrobial activity and reduced toxicity of oxidative biocides through biodegradable microparticles
نویسندگان
چکیده
The spread of antibiotic-resistant pathogens requires new treatments. Small molecule precursor compounds that produce oxidative biocides with well-established antimicrobial properties could provide a range of new therapeutic products to combat resistant infections. The aim of this study was to investigate a novel biomaterials-based approach for the manufacture, targeted delivery and controlled release of a peroxygen donor (sodium percarbonate) combined with an acetyl donor (tetraacetylethylenediamine) to deliver local antimicrobial activity via a dynamic equilibrium mixture of hydrogen peroxide and peracetic acid. Entrapment of the pre-cursor compounds into hierarchically structured degradable microparticles was achieved using an innovative dry manufacturing process involving thermally induced phase separation (TIPS) that circumvented compound decomposition associated with conventional microparticle manufacture. The microparticles provided controlled release of hydrogen peroxide and peracetic acid that led to rapid and sustained killing of multiple drug-resistant organisms (methicillin-resistant Staphylococcus aureus and carbapenem-resistant Escherichia coli) without associated cytotoxicity in vitro nor intracutaneous reactivity in vivo. The results from this study demonstrate for the first time that microparticles loaded with acetyl and peroxygen donors retain their antimicrobial activity whilst eliciting no host toxicity. In doing so, it overcomes the detrimental effects that have prevented oxidative biocides from being used as alternatives to conventional antibiotics. STATEMENT OF SIGNIFICANCE The manuscript explores a novel approach to utilize the antimicrobial activity of oxidative species for sustained killing of multiple drug-resistant organisms without causing collateral tissue damage. The results demonstrate, for the first time, the ability to load pre-cursor compounds into porous polymeric structures that results in their release and conversion into oxidative species in a controlled manner. Until now, the use of oxidative species has not been considered as a candidate therapeutic replacement for conventional antibiotics due to difficulties associated with handling during manufacture and controlling sustained release without causing undesirable tissue damage. The ultimate impact of the research could be the creation of new materials-based anti-infective chemotherapeutic agents that have minimal potential for giving rise to antimicrobial resistance.
منابع مشابه
Sustained Release of Risedronate from PLGA Microparticles Embedded in Alginate Hydrogel for Treatment of Bony Lesions
Background: Inflammatory bone resorption in periodontitis can lead to tooth loss. Systemic administration of bisphosphonates such as risedronate for preventing bone resorption can cause adverse effects. Alginate hydrogel (ALG) and poly (lactic acid-co-glycolic acid) (PLGA) microparticles have been studied as drug delivery systems for sustained release of drugs. Therefore, the release pattern of...
متن کاملIKK2 Inhibition Using TPCA-1-Loaded PLGA Microparticles Attenuates Laser-Induced Choroidal Neovascularization and Macrophage Recruitment
The inhibition of NF-κB by genetic deletion or pharmacological inhibition of IKK2 significantly reduces laser-induced choroid neovascularization (CNV). To achieve a sustained and controlled intraocular release of a selective and potent IKK2 inhibitor, 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1) (MW: 279.29), we developed a biodegradable poly-lactide-co-glycolide ...
متن کاملThe experimental model of lysozyme sustained release based on poly(3-hydroxybutyrate)-poly(ethylene glycol)/hydroxyapatite microparticles
Development of experimental models of proteins sustained release is a promising trend in modern biochemistry and biopharmacology. Application of proteins sustained release systems based on biopolymer microparticles allow to model prolonged protein action in vitro and in vivo. Moreover, the use of these devices in biopharmacology can eliminate the most of the drawbacks of traditional medicines: ...
متن کاملZataria multiflora Essential oil Prevent Iron Oxide Nanoparticles-induced Liver Toxicity in Rat Model
Over loading of iron oxide nanoparticles can causes the liver injury through overproduction of free radicals. Zataria multiflora Boiss. (Lamiaceae) has been used for many years in folk medicine due to its antioxidant and antibacterial activities. This study evaluates -for the first time- the effect of Z. multiflora essential oil (EO) against iron oxide nanoparticles hepatotoxicity in rat model....
متن کاملIn Vitro Biocontrol of Escherichia coli Through the Immobilization of its Specific Lytic Bacteriophage on Cellulose Acetate Biodegradable Film
Background and Aims: Bacteriophages are mandatory bacterial parasites that are harmless to human and animal, which are used by dipping or spraying in food as natural antimicrobial agents. The use of these methods leads to wasting or trapping of phage in food, but its immobilization on the polymer surface facilitates the contact of phage with the host cell at the food surface. Therefore, the aim...
متن کامل